

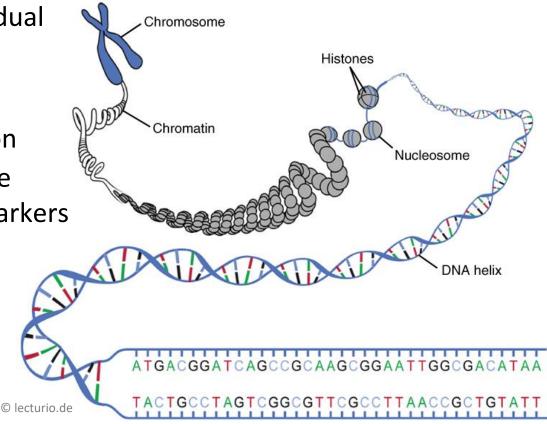
WBFSH webinar on 7th December 2021

Parentage testing based on SNPs - experiences from Germany

M. Wobbe¹, H. Alkhoder¹, K. F. Stock¹

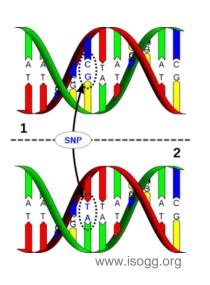
¹IT solutions for animal production (vit), Verden, Germany

Outline


- background types of markers
 - microsatellites (MS) = short tandem repeats (STRs)
 - single nucleotid polymorphisms (SNPs)
- parentage testing
 - transfer from MS to SNP
- first experiences from routine (breeding season 2021)
- prospects

Background (I)

- much of DNA is non-coding
 - much + highly individual variation in the DNA (genetic fingerprint)
- different types of variation
 - certain types suitable for use as genetic markers



Background (II)

...GCCTAAGCGTAGTAGTAGTA

CCTAAGCGTAGTAGTAGTAGTA

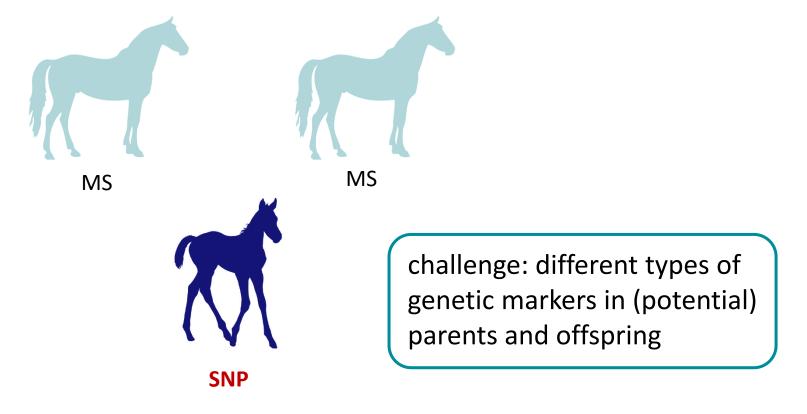
- microsatellite (MS) = short tandem repeat (STR)
 - certain DNA motifs (2-6 basepairs) are repeated
 - typically 5-50 times repeated
 - ➤ many different expressions → few STRs are enough for individual characterization
 - traditionally used for parentage testing
- single nucleotide polymorphism (SNP)
 - single basepair difference within DNA sequence
 - spread over the whole genome (markers)
 - ➤ little information value per marker → need of more SNPs for a specific pattern
 - essential 'tool' of genomic analyses (SNP arrays)

SNP vs. MS

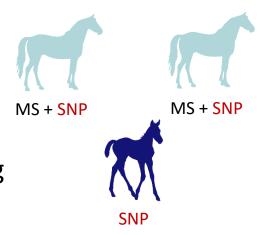
MS

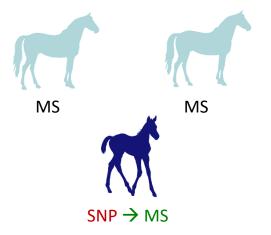
- world standard for parentage testing so far (ISAG)
- approx. 20 or less MS enough for identification
- no additional application possibilities (only parentage testing)

❖ SNP

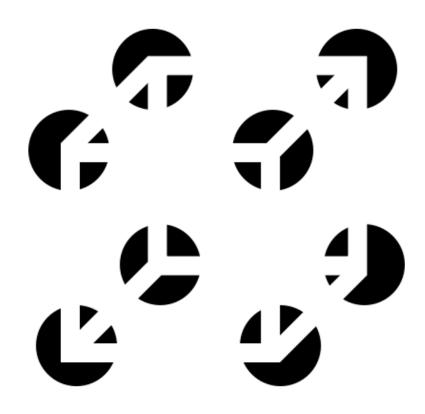

- reduced costs per genotype
- faster throughput & laboratory automation capability
- variety of genomic application possibilities
 - parentage testing as only one aspect

Transfer from MS to SNP (I)

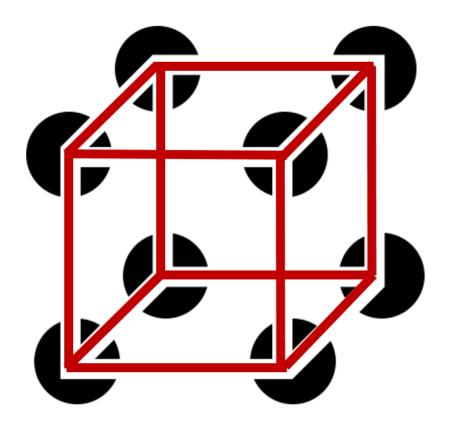

- basis of parentage testing: same type of markers across generations
- starting with SNP genotyping of foals:

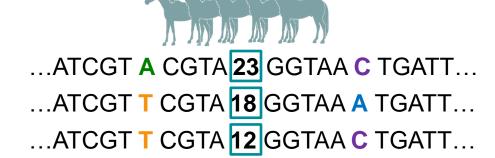


Transfer from MS to SNP (II)


- challenge of two different types of genetic markers
- two possible solutions:
 - direct transfer to SNP parentage testing
 - need of extra genotyping of parents (€€€)

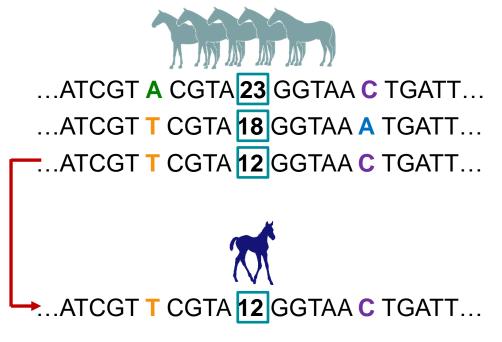
- bridging the gap via imputation
 - foal: MS-imputation based on SNPs





- completion of information based on previous knowledge
- training set: dataset of horses genotyped for SNPs and MS

- completion of information based on previous knowledge
- training set: dataset of horses genotyped for SNPs and MS
- certain SNP combinations occur with a certain form of a MS



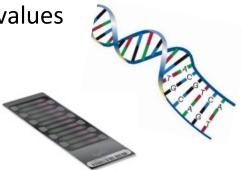
- completion of information based on previous knowledge
- training set: dataset of horses genotyped for SNPs and MS
- certain SNP combinations occur with a certain form of a MS
- development of a system for imputation of MS based on SNP information (FBN Dummerstorf, Nolte et. al)

Routine SNP-based MS imputation

- 13 MS imputed for the routine parentage testing
 - 11 from 12 of the ISAG core panel
 - 2 optional marker
- high accuracies achieved by imputation for these MS
 - around 98-99%
 - using all SNPs on the chromosome of the MS
- comment: 14 MS included in research & development
 - one marker was 'lost': AHT5
 - positioning at the beginning of chromosome 8
 - only few SNPs available in front of this MS
 - decided not to use in routine

First experiences from routine

- transfer of the developed imputation system to routine (vit)
 - routine work for breeding season 2021 all IAFH member studbooks (TRAK, HOL, OL, OS and WESTF)
- proof of principle
 - until 01.12.2021 N=11,047 horses passed the new system:


	TRAK	HOL	OL	OS	WESTF	Total
Number of samples						
without indications of	1,040	2,553	3,729	3,128	425	10,875
Mendelian conflicts*						
Number (%) of samples						
with indications of	20 (1.9%)	29 (1.1%)	63 (1.7%)	54 (1.7%)	6 (1.4%)	172 (1.6%)
Mendelian conflicts						
Total number of horses	1,040	2,582	3,792	3,182	431	11,047
per studbook	1,040	2,362	3,792	3,102	431	11,047

^{*}handling of Mendelian conflicts as ISAG (single discrepancies between imputed and lab-generated MS do exist)

Prospects

- cost and labor efficient way to the new system
 - bridging the gap for transfer from MS to SNP parentage control
- so far only developed for Warmblood horses (possible for other breeds: training set needed)
- new genomic applications becoming feasible
 - SNP genotyping of all foals with optimized SNP array commercially available Equine80select
 - genetic characteristics
 - genomic breeding values
 - etc.

Contact:

Mirell Wobbe (E-mail: mirell.wobbe@vit.de; phone: +49-4231-955185)
Kathrin F. Stock (E-mail: friederike.katharina.stock@vit.de; phone: +49-4231-955623)

Thank you!

IAFH International Association of Future Horse Breeding GmbH & Co KG

